This is a MathJax test:
\[\Huge e^{i\pi}+1=0\]
\begin{align*}
1\phantom{^2}:\qquad\quad\mathbf{d}_{ij}^{(0)}\cdot\mathbf{d}_{ij}^{(0)}&=\phantom{-}l_{ij}^2\\
t\phantom{^2}:\qquad\quad\mathbf{d}_{ij}^{(0)}\cdot\mathbf{d}_{ij}^{(1)}&=\phantom{-}0\\
t^2:\qquad\quad\mathbf{d}_{ij}^{(0)}\cdot\mathbf{d}_{ij}^{(2)}&=- \frac{1}{2} \mathbf{d}_{ij}^{(1)}\cdot\mathbf{d}_{ij}^{(1)}\\
t^3:\qquad\quad\mathbf{d}_{ij}^{(0)}\cdot\mathbf{d}_{ij}^{(3)}&=-\phantom{\frac{1}{2}}\mathbf{d}_{ij}^{(1)}\cdot\mathbf{d}_{ij}^{(2)}\\
t^4:\qquad\quad\mathbf{d}_{ij}^{(0)}\cdot\mathbf{d}_{ij}^{(4)}&=-\phantom{\frac{1}{2}}\mathbf{d}_{ij}^{(1)}\cdot\mathbf{d}_{ij}^{(3)}-
\frac{1}{2}\mathbf{d}_{ij}^{(2)}\cdot\mathbf{d}_{ij}^{(2)}\\
&\hspace{0.5em}\vdots\\
t^m:\qquad\quad\!\!\mathbf{d}_{ij}^{(0)}\cdot\mathbf{d}_{ij}^{(m)}&=
-\sum_{k=1}^{\lfloor\frac{m}{2}\rfloor}\frac{\mathbf{d}_{ij}^{(k)}\cdot\mathbf{d}_{ij}^{(m-k)}}{1+\delta_{k,m-k}}
=Q_{ij}^{(m)}(\mathbf{d}_{ij}^{(1)},\dots,\mathbf{d}_{ij}^{(m-1)})\\
\end{align*}